
1

Slide 1 Hello

And the last talk for today. Can you hear me?

Hi again! Thanks for staying to listen to me . {PAUSE}

àDo you know what your computer memory contains? {PAUSE} Of course operation

system, office programs, working documents etc . àAre you sure there are no

hidden process es or drivers ? {PAUSE}

Today Iõll tell you how to find hidden objects in virtual memory.

Slide 2 Area of memory forensics

First Iõd like to define memory forensics and its goals. Memory forensics is memory

analysis which is made to achieve cyber security goals, for example work with

sensitive information in memory, reverse engineering of software, hidden programs

detection .

In this talk Iõd like to focus on roӢotkit s detection .

2

Slide 3 Agenda

This talk consists of three parts. The first part covers [cuvez] existing memory

dump and detection approaches [apro-ochez]. In the second part , Iõll go on to the

new memory dump system. And the third part deals with two detection approaches

which are resilient to an intruder.

Now Iõm going to present current approaches not because I want to criticize them

but because I want to avoid their dr §wbacks. {PAUSE}

Slide 4 RoӢotkit Technologies

Modern m§lware can prevent its dumping and further analysis by using roӢotkit

techniӢques. {PAUSE} RoӢotkit techniӢques are generally classified by two approaches :

function hooking and object manipulations . Function hooking causes moӢdif ication of

func tion r esults. Changes are highlighted by yellow color. By unlinking structures

from lists {PAUSE} process can be hidden . {See yellow rectangles } And in some

cases this hidden structure might be additionally moӢdified. {See yellow squares}.

àWhy does it occur? Iõll give you answers [ansez] in my second part.

3

Slide 5 Dump approaches tree

It is possible to dump virtual and physical memory with software and hardware

approaches. We want to get a dump approach, which is resilient to hooking and easy

to distr iӢbute. àCan we do it?

Slide 6 Dump approaches table

Not by current approaches, because s oftware approaches are vulnerable to

roӢotkit s techniӢques. Hardware approaches are not suitable [sutabl e] for use in

®nterprises . {PAUSE} We cannot improve hardware approaches.

àCan we improve software ones?

Slide 7 Q

Letõs think w hy are software approaches vulnerable [vaLnerbl] ?

To answer this question letõs look at a typical tool for memory dump and analysis.

4

Slide 8 Details of dump & analysis tools

àWhat are the main components of such a tool ? {PAUSE} This tool usually consists

of three components: memory acquisition, its saving and analyzing. {PAUSE} These

authors describe methods to disrupt each component. For exa mple LuӢka Milkovicõs

approach is based on hooking acquisition routine and replacing its buffer content.

As a result memory pages w ill be saved without information about m§lware.

We cannot use operation system functions , because they can be intercepted .

Slide 9 Q

àWhat can we do under these circumstances ? {FASTER}

Slide 10 Q

Let's omiӢt the functions! {PAUSE}

Slide 11 Q

àWhat can we use instead?

5

Slide 12 Virtual and Physical memory

Letõs look at memory addr®ssing in protected mode . In this mode each

process [pro-oses] uses [uzez] a s®parate memory context , with user mode and

kernel mode. Here we have two processes [pro-osesez] Calculator and Word. They

contain pages, colored [colod] pink and green. Roughly, kernel mode includes two

pages yellow and brown. And here they §re in physical memory.

àHow does addr®ss tr §nsl§tion w·rk?

Slide 13 Q

When a program accesses the virtual addr ®ss, the C-P-U is walking through the

sĲstem tables to find the corresponding page entry. Its P-F-N Page Frame Number,

corresponds to the page physical addr®ss.

Slide 14 How does

Letõs focus on the dashed line rect §ngle. àIs it possible to use this fragment in

memory dump? {PAUSE}

Slide 15 How does

Yes it is ! Letõs run addr®sses translation in reverse! {PAUSE}

6

Slide 16 Memory dump algorithm

Let me demonstrate [demonstra -ate] how to use paging for memory dump . {PAUSE}

Walk successively [succeessively] through the Page Directory entries and check

the P flag of each entry. {PAUSE} If this flag is 0, go to the next entry;

Slide 17 Memory dump algorithm

Otherwise check the Page Size flag. If PS flag is 1, save the corresponding memory

page.

Slide 18 Memory dump algorithm

If PS flag is 0 {PAUSE} this entry corresponds to the Page Table. Go to this Table.

Slide 19 Memory dump algorithm Ą Slide 20 Memory dump algorithm

In a similar way walk successively [succeessively] through the Page Table and save

memory pages.

Slide 21 Memory dump algorithm

As a result we acquire complete dump of virtual memory from one process, without

memory mapping routines.

7

Slide 22 Dump algorithm details

Here is what we get after applying memory dump algorithm.

We save virtual memory context in two files. The f irst file contains only memory

pages without gaps. The second file contains the connection between the page

addr®sses in the virtual memory and its ·ffset in the dump file. {PAUSE}

For example, we copy page number three from the memory to dump file and save

its ·ffset, start and finish addresses to the struct file.

Slide 23 Q

àWhy are there two files: dump and struct? àHow should they be used?

Slide 24 MASHKA in memory forensics tasks

By using MASHKA we can search for binary fragments, strings and do other typical

forensics tasks. To understand how it works, l etõs find the string òdot sysó.

Before analyzing we load the dump file completely. After searching w e receive its

dumpõs ·ffset O-D-U-F and addr®ss in this memory V -A-L-F {SLIDE}.

8

Slide 25 MASHKA in memory forensics tasks

By using struct file we get its original addr®ss ð V-A-O-M.

Slide 26 MASHKA in memory forensics tasks

By using VAOM it is possible to find objects, which refer to this string.

For example this allows us to reverse structures with the help of the fragments we

know. In a similar way we can search for various objects.

Slide 27 Q

Letõs see how to use this system in drivers forensics .

Slide 28 Use MASHKA in drivers forensics

We are going to find information in memory about driver , as if it was hidden. This

is just a demo.

Before starting a driver letõs look at two lists: list of services in services dot exe

and list of loaded drivers in kernel memory, or PsL·adModuleList.

9

Slide 29 Use MASHKA in drivers forensics

After we have loaded a driver {SLIDE} new structures are added to memory. They

contain links to strings.

Slide 30 Use MASHKA in drivers forensics

By searching known ôServiceNameõ we can find its VAOM .

Slide 31 Use MASHKA in drivers forensics

After that we can use VAOM value to find all the required structures and lists.

Slide 32 Advantages of MASHKA

This approach itõs fast and resilient [resileeyent] to typical attacks like hooking.

It gives various opportunities for solving memory forensics tasks.

Letõs look at how to use MASHKA to solve two of them.

Slide 33 Q

àHow to apply MASHKA to processes detection?

10

Slide 34 Q

Iõve always had some reservations about windows task manager f or good reason .

Process can be hidden with the help of function hooking or process list

moӢdif ic§tion . àHow to detect a hidden process ?

Slide 35 Process detection approaches review

Letõs analyze popular cross-view detection approaches. The heur²stic analyzer has

to collect enough information about activity of a program, which is nõt reliable . For

example a hidden program can send data to server once a week. We have to wait of

a week. The second method uses information from additional objects lists. This

method is vulnerable to unlinking a t arget structure from all these lists. The third

method uses signatures of processes structures to search them in memory dump.

Slide 36 Process detection approaches review with red square

Letõs analyze static signature scans

