Slide 1 Hello

And the last talk for today. = Can you hear me?
Hi again! Thanks for staying to listen to me .{PAUSE}

aDo you know what your computer memory contains? {PAUSE} Of course operation
system, office programs, working documents etc. aAre you sure there are no

hidden process es or drivers ? {PAUSE}

Today | 061l | t el | vy oobjects onwirttalomemoryn d hi dden

APPLYING MEMORY
FORENSICS TO ROOTKIT
DETECTION

Igor Korkin Ivan Nesterov

CDFSL2014

Slide 2 Area of memory forensics

First | 6 d | dekne mdmory forensics and its goals. Memory forensics is memory
analysis which is made to achieve cyber security goals, for example work with
sensitive information in memory, reverse engineering of software, hidden programs

detection .

I n this tal k lodrdotkit $detectano f oc u s

Goals of memory forensics

Passwords, cryptokeys and etc.
revealing software “

n [SOftware reverse engineeringj

[Rootkits analysis & detection]

Slide 3 Agenda

This talk consists of three parts. The first part covers | cuvez] existing memory

dump and detection approaches [apro-ochez]. In the second part , Il 61 | go
new memory dump system. And the third part deals with two detection approaches

which are resilient to an intruder.

Now | dm goi n gurrdnttapppoackes enot because | want to criticize them

but because | want to avoid their dr 8wbacks. {PAUSE}

Agenda

1. Review of dump & analysis tools in rootkit
conditions
2-3. MASHKA — Malware Analysis System for
Hidden Knotty Anomalies:

""/Memory Dumr;\“ ~
= N
‘,’ “=.__System _-— A
| RPIfor DBS for

_drivers processes
~ ~ J /”

e

Slide 4 R @kit Technologies

Modern m §lware can prevent its dumping and further analysis by using r kit

t e c fuesi {PAUSE} R @tkit technilfues are generally classified by two approaches:
function hooking and object manipulations . Function hooking causes m ddif ication of
function r esults. Changesare highlighted by yellow color. By unlinking structures
from lists {PAUSE]} process can be hidden . {See yellow rectangles } And in some
cases this hidden structure might be additionally = motiified. {See yellow squares}.

awhydoes it oc c urafswérshnke ;imy secoydpart.

Review of rootkits techniques

Rootkits technigues - malware hiding
from OS & AV

object manipulation
(byte modification)

function hooking

EPROCESS structures

[t ! R]

Slide 5 Dump approaches tree

It is possible to dump virtual and physical memory with software and hardware

approaches. We want to get a dump approach, which is resilient to hooking and easy

to distr ibute. aCan we do it?

A)

(_ Vulnerable? .) ()

C " (__distribution? -
<. T

Dump approaches classification
I

[Virtual memory] [Physical memory ‘
|] F

[V Software \‘ ‘ Hardware \‘

—— T

PR =<
. [Easeof

SN A— ——
o — N
£~ o

Slide 6 Dump approaches table

Not by current approaches, because s oftware approaches are vulnerable to
r Btkit st e c Huesi Hardware approaches are not suitable [sutab/ €] for use in

@nterprises . {PAUSE} We cannot improve hardware approaches.

a @nwe improve software ones?

Dump approaches are either
vulnerable or
non applicable in enterprises

Hooking Ease of
resilience distribution
[Soﬂware - + J
Hardware + -

Slide 7 Q

Le t thisk w hy are software approaches vulnerable [valLnerbl] ?

To answer this qu atypical doolfol nemdrysdunpa@md lanalgsts.

Why are software approaches
vulnerable?

Slide 8 Details of dump & analysis tools

aWhat are the main components of such atool ? {PAUSE} This tool usually consists

of three components: memory acquisition, its saving and analyzing. {PAUSE} These
authors describe methods to disrupt each component. For example Lukh Milkovic 8 s
approach is based on hooking acquisition routine and replacing its buffer content.

As a result memory pages w ill be saved without information about mS§lware.

We cannot use operation system functions , because they can be intercepted .

Details of dump & analysis tools

Typical dump & analysis tool
J Stuttgen, M.Cohen ("13)

Memory mapping J

routines Y Hook

|

ZwWriteFile or analogue <

L.Milkovic ("12)
Hook |

T.Haruyama, H.Suzuki (12

)

Analysis of kernel 0S

structures N Byte Modification

Slide 9 Q

aWhat can we do under these circumstances ? {FASTER}

What can we do under these

circumstances?

Slide 10 Q

Let's om itthe functions! {PAUSE}

~' What can we do under these

circumstances?

Let's omit the functions!

Slide 11 Q

aWhat can we use instead?

What can we do under these

’ circumstances?

Let's omit the functions!

What can we use

instead?

Slide 12 Virtual and Physical memory

Let 6s | ook a ®ssimgenmpmotecied rmoded .rin this mode each

process [pro-oses| uses [uzez] a s@parate memory context , with user mode and
kernel mode. Here we have two processes [pro-osesez] Calculator and Word. They
contain pages, colored [colod] pink and green. Roughly, kernel mode includes two
pages yellow and brown. And here they 8re in physical memory.

aHow does addr ®ss tr 8nsl8tion w - rk?

Virtual and Physical memory
Virtual memory Physical memory

kernel

word.exe

calc.exe

word.exe

kernel mode user mode

Slide 13 Q

When a program accesses the virtual addr ®ss, the C-P-U is walking through the

slktem tables to find the corresponding page entry. Its P-F-N Page Frame Number,

corresponds to the page physical ad d s.®s

How does addresses translation work?

(v W
ACCESS » Virtual address
A

Table’s entry:
FLAGS PFN

Physical memory

Address =
PEN*0x1000

Slide 14 How does
2

L et 6 s ohtbhecdasked line rect 8ngle. als it possible to use this fragment in

memory dump? {PAUSE}

Is it possible to
%\ usepagingin
'

Slide 15 How does

Yesitis!L et 0 s r®ses trandlation in reverse! {PAUSE}

Is it possible to
")\ usepagingin
dump?

Let's runaddresses " Address -
2 PEN*0x1000
| translation in reverse!

5

Slide 16 Memory dump algorithm

Let me demonstrate [demonstra -ate] how to use paging for memory dump . {PAUSE}

Walk successively [succeessively] through the Page Directory entries and check

the P flag of each entry. {PAUSE} If this flag is O, go to the next entry;

BE 3C

MASHKA’s memory dump algorithm
Page Directory

others P

Go to next entry

Slide 17 Memory dump algorithm

Otherwise check the Page Size flag. If PS flag is 1, save the corresponding memory

page.

MASHKA’s memory dump algorithm

(] [othes[P [Ps]|

Go to next entry

Save memory page
(4 Mb or 2Mb) by i

Slide 18 Memory dump algorithm

If PS flagis 0 {PAUSE} this entry corresponds to the Page Table. Go to this Table.

Slide 19 Memory dump algorithm A Slide 20 Memory dump algorithm

In a similar way walk successively [succeessively] through the Page Table and save

memory pages.

Slide 21 Memory dump algorithm

As a result we acquire complete dump of virtual memory from one process, without

memory mapping routines.

MASHKA’s memory dump algorithm

[5][BE3c| 0

Go to next entry

Ly Save memory page
(4 Mb or 2Mb) by i
Go to Page Table

Page Table

(1] [others | »]| Gotonextentry
0| 0 4
[1]

{ —+ Save memory page
(4Kb)byi&j

Slide 22 Dump algorithm details
&

Here is what we get after applying memory dump algorithm.

We save virtual memory context in two files. The f irst file contains only memory
pages without gaps. The second file contains the connection between the page

a d d seB g the virtual memory and its - ffset in the dump file. {PAUSE}

For example, we copy page number three from the memory to dump file and save

its - ffset, start and finish addresses to the struct file.

Virtual Memory (4GB) Page 3
.

Starthddr_3

FinishAddr 3

Dump algorithm details

v Dump File (300Mb)

DumpOffset 3
i Page 2

Page 1

Page 4
Page 2 e

Page 5

Page 3 41 Struct File

StartAddr 1 |FinishAdde 1 |DumpOffset 1

Page 4 W starthadr 2 | rinishaddr 2 | Dunpotfset 2

Page 5

StartAddr 3 | FinishAddr_3 |BumpOffset 3

‘su:nddt} FinishAddr_5 | DunpOfEset_5

Slide 23 Q

aWwhy are there two files: dump and struct? aHow should they be used?

MASHKA’s dump algorithm details

“37’{;/7 How should new files be used}i_fﬁ)

Tage Dump File (300Mb)

Virtual Memory (4GB)

Page

Page

Fage 3 Struct File

addr_i [punpotsec_i

s i

Slide 24 MASHKA in memory forensics tasks

By using MASHKA we can search for binary fragments, strings
forensics tasks. To understand how it works,| et find the st r idotg yas 6
Before analyzing we load the dump file completely. After searchingw e receive its

dumpfisest O-D-U-Fanda d d rs{® this memory V -A-L-F {SLIDE}.

and do other typical

MASH

KA in memory forensics tasks

4 L
ODUF

e

oaded Dump File 3

v.sys”

v

VALF

Virtual Address in the Loaded dump File

ODUF

Offset in DUmp File

Slide 25 MASHKA in memory forensics tasks

By using struct file we getits original a d d s ®\%A-O-M.

MASHKA in memory forensics tasks
g Loaded Dump File

ODUF
" sys"
s
Struct File
ODUFC—>
\ vAOM
VAOM Virtual Address in the Original virt. Memory
VALF Virtual Address in the Loaded dump File
ODUF Offset in DUmp File

Slide 26 MASHKA in memory forensics tasks
By using VAOM it is possible to find objects, which refer to this string.

For example this allows us to reverse structures with the help of the fragments we

know. In a similar way we can search for various objects.

MASHKA in memory forensics tasks
g Loaded Dump File) })

N 4 N\
Original Virt. memory

ODUF

" sys”

e

Struct File
ODUF——>

\ VAOM .

VAOM

2E 73 79 73

VAOM Virtual Address in the Original virt. Memory
VALF Virtual Address in the Loaded dump File
ODUF Offset in DUmp File

Slide 27 Q

L e t séeshow to use this system in drivers forensics .

- Howis VAOM etc used?

o

Slide 28 Use MASHKA in drivers forensics

We are going to find information in memory about driver , as if it was hidden. This

IS just a demo.

Before starting a driver | etds | oo ldotaxe

and list of loaded drivers in kernel memory, or PsL: adModuleList.

t

Use MASHKA in drivers forensics

SERVICES.EXE

SCM structures list:
user 5]

mso | [HHE
PsLoadModulelList:

kernel o
mode

DRIVER_OBJECT

Use MASHKA in drivers forensics

Slide 29 Use MASHKA in drivers forensics
Ci e(ServiceName, Di , BinaryPath,...)
. Dﬁgx%%%i;m — _.
After we have loaded a driver {SLIDE} new structures are added to memory. They B e
contain links to strings. %ﬁﬁ-
. . . . Use MASHKA in drivers forensics
Slide 30 Use MASHKA in drivers forensics g o
| =y
By searching known 0SeitsVAOdMe Named we can W—{;
il

{
ServiceName > VAOMSs of ‘SN’ |
ServiceName
BinanyPath

Use MASHKA in drivers forensics

Slide 31 Use MASHKA in drivers forensics R nanren
miae SFRE

After that we can use VAOM value to find all the required structures and lists. s
ey Tl

Slide 32 Advantages of MASHKA
Advantages of MASHKA

Uses only two functions:

KeAttachProcess and memory templates

[Finds different

This approachi t © s and eeslient [resileeyent] to typical attacks like hooking.

ZwWriteFile fast

\.

It gives various opportunities for solving memory forensics tasks. (s L e mostome
due to low-level data by run-time
~ OS calls usage encryption J
Letds | ook at how to use MASHKA to sol ve
Slide 33 Q

How to apply MASHKA to
processes detection?

aHow to apply MASHKA to processes detection?

Slide 34 Q

| 6ve always had some reservat iforgsodradsanu t

Process can be hidden with the help of function hooking or process list

m dfif ic8tion . aHow to detect a hidden process ?

0S processes listhandling

ZwQuerySysteminformation

=7 hooking

process be or

how canthe

hidden?
%ﬁ PsActiveProcessList
modifying

('.'i_'.: How to detect stealth process?.‘;_;j)

Slide 35 Process detection approaches review

Let 6s anal graseview dgieatioreapproaches. The heur3stic analyzer has

to collect enough information about activity of a program, which isnd reliable . For
example a hidden program can send data to server once a week. We have to wait of
a week. The second method uses information from additional objects lists. This

method is vulnerable to unlinking a target structure from all these lists. The third

method uses signhatures of processes structures to search them in memory dump.

Slide 36 Process detection approaches review with red square

Let 6 s atatia signatuee scans

10

